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Abstract X-ray lithography is an important technique in micro fabrication used to obtain
structures and devices with a high aspect ratio. The X-ray exposure takes place in a system
composed of a mask and a photoresist deposited on a substrate (with a gap between mask and
resist). Predictions of the temperature distribution in three dimensions in the different layers
(mask, gap, photoresist and substrate) and of the potential temperature rise are essential for
determining the effect of high flux X-ray exposure on distortions in the photoresist due to thermal
expansion. In this study, we develop a three-dimensional numerical method for obtaining the
temperature profile in an X-ray irradiation process by using a hybrid finite element-finite
difference scheme for solving three-dimensional parabolic equations on thin layers. A domain
decomposition algorithm is then obtained based on a parallel Gaussian elimination for solving
block tridiagonal linear systems. The method is illustrated by a numerical method.

Nomenclature
A;B;D;D;K;K;U ;D1 = matrix
cp = specific heat
H1;H2;H3;H4 = thickness
hc = convective heat

transfer
coefficient

g; g1; g2; g3; g4 = source term
k1; k2; k3; k4 = thermal

conductivity
N ;Nz = number of grid

points
n = the nth time

step
r = radius
r1; r2; r3; r4 = mesh ratio
T ,T1;T2;T3;T4 = temperature
Th = test function
T1 = surrounding

temperature
t = time
Wo = irradiance

x; y; z = coordinates
~x = eigenvector

Greek symbols
�; �1; �2; �3; �4 = thermal

diffusivity
�t = time increment
�z = grid size in the

z-direction
� = absorption

coefficient
� = density
�; �; � = eigenvalue
'p = basic function
! = relaxation

parameter

Subscripts
i = layer
m = grid point in

the z-direction
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1. Introduction
X-ray lithography is an important technique in micro fabrication used to obtain
structures and devices with a high aspect ratio. The X-ray exposure takes
place in a system composed of a mask and a photoresist, such as
polymethylmethacrylate (PMMA), deposited on a substrate, as shown in Figure
1. The mask layer creates a desired pattern on the photoresist by selectively
allowing the transmission of irradiation from an X-ray beam. After exposure,
the photoresist is developed to remove the irradiated area, leaving behind an
imprint of the pattern in the form of exposed substrate and photoresist walls.
The pattern can now be used as a micromold. Electroplating can then be used
to fill the mold with a metal. The remaining unexposed part of the photoresist
can then be removed by an etchant, leaving the free standing microstructure on
the substrate.

For rapid manufacturing of microdevices needed for commercialization,
exposure times in minutes from high flux synchrotron sources may be needed.
However, with the higher flux, heating of the photoresist may develop. Hence,
the study of thermal effects, such as temperature rise and temperature
distribution, induced in resist during X-ray exposure is important for the
optimization of exposure condition (Manohara et al., 1996). Analytic solutions
(such as using the Green's function method (Cozisik, 1980)) to the system of
these differential equations describing heat flow in the process are not easy to
obtain due to the complication of the three-dimensional case and the fact that
the value at the interfacial boundary between layers is unknown. Only a few

x-ray radiation

gap

mask

resist

substrate

carrier

Figure 1.
Schematic diagram of an

X-ray lithography
system
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studies have considered these kind of problems in the literature (Ameel et al.,
1994; Cole and McGahan, 1993; Feiertag et al., 1997; Madison and McDaniel,
1989). Kant (1988, pp. 93-7) considered a laser absorption geometry that was
limited to either a single interface or multiple interfaces between layers. The
transient heat transfer equation was solved using the Laplace transform
appropriate for the temperature rise caused by a single pulse. Madison and
McDaniel (1989) also considered transient pulses of a scanned laser beam with
arbitrary absorption across the source layer. Globally defined Green's functions
and Laplace transforms were used to obtain solutions for temperature profiles
resulting from the absorption of normally incident continuous and pulsed-
Gaussian-beam irradiation. Cole and McGahan (1993) presented a method for
temperature prediction in anisotropic multilayer materials that includes
contact resistance between the layers for axisymmetric chopped-beam laser
heating. Their method was based on a local Green's function for each layer.
Ameel et al. (1994) developed simplified one- and two-dimensional analytical
solutions and an FEM model to the problem of X-ray heating of multilayers for
both uniform absorption and for absorption that decreases exponentially with
depth. Feiertag et al. (1997) and Li et al. (1996) used a finite element analysis in
three dimensions to study the thermoelastic mask deformation in deep X-ray
lithography with synchrotron radiation. Recently, Dai et al. (1997) and Dai and
Nassar (1997) have developed several numerical heat transfer models for
thermal analysis in X-ray irradiated photoresists. The steady state temperature
distribution in the resist has been obtained by solving the unsteady state
differential equations in the case of two layers, resist and substrate, with a
rectangular or cylindrical geometry. The authors further developed
preconditioned Richardson methods to investigate the steady state temperature
distribution in an X-ray irradiation process with rectangular or cylindrical
geometry, where the target consists of a mask, a resist and a substrate (with a
gap between mask and resist) (Dai and Nassar, 1998a; 1998b). In Dai and
Nassar (1998a; 1998b), the Poisson equation at the micro-scale was solved using
a preconditioned Richardson iteration in order to obtain the steady state
temperature. As we know, the usual shape of pattern on the mask is arbitrary
geometry and shape of the mask is either rectangular or cylindrical geometry.
Since the finite element method is an efficient method to deal with arbitrary
geometry, in this study we solve three-dimensional parabolic differential
equations and develop a hybrid finite element-finite difference method to
investigate the transient temperature distribution in an X-ray irradiation
process, where the target consists of a mask, a resist and a substrate (with a
gap between mask and resist) with cylindrical geometry, as shown in Figure 2.
A semi-discretized equation is first obtained by applying the finite element to
the xy-cross section and the finite difference to the z-thickness direction. To
solve the semi-discretized equation, the idea of the Crank-Nicolson type scheme
(Canuto et al., 1988) is applied so that the obtained numerical scheme is
unconditionally stable. Unconditional stability is particularly important so that
there are no restrictions on the mesh ratio, since the grid size in the z-direction
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is very small for simulating the X-ray lithography process. A domain
decomposition algorithm is then developed for thin multilayers based on the
parallel Gaussian elimination procedure for solving block tridiagonal linear
systems.

2. X-ray irradiation process
We now consider an X-ray irradiation process with cylindrical geometry, where
the target consists of a mask, a resist and a substrate (with a gap between mask
and resist), as shown in Figure 2 (mask, resist and substrate are held in place
through a special clamping mechanism not shown in the figure). A gap exists
between mask and resist which contains a gas such as He. The resist such as
PMMA is bonded and can be on a substrate, such as silicon. Without loss of
generality, we consider that the cylindrical mask, resist and substrate are very
thin, of the order of 300�m, 300 �m and 500 �m respectively, with a radius of 5
mm. The gap is also very thin, of the order of 50�m. To study the effect of the
high flux X-ray exposure on distortions in the resist, it is important to predict
the temperature distribution in the resist and the substrate. Much of the
incident radiation is transmitted through the mask. Only the absorbed energy
is transmitted by conduction. Due to the very thin gap and the relatively low
temperature, radiation can be neglected. Also, the cooling effect resulting from
free convection is negligible and therefore heat is mainly transferred by
conduction through the gap (Li et al., 1996). Heat is then transferred by
conduction through the resist and substrate. We assume that the resist layer is
on a thick substrate which is well cooled and remains at a fixed temperature

X-Ray Beam Y

X
Mask      T1

Gap      T2

Resist   T3

Substrate  T4

a
b = 5a

a = 1mm

Interface

Z

H1=300 µm

H2=50 µm

H3=300 µm

H4=500 µm

Figure 2.
Three-dimensional

configuration of mask,
gap, resist and substrate
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(Ameel et al., 1994). Following the procedure in Ameel et al. (1994), we express
the governing equations for heat conduction as follows:

Mask

@T1

@t
� �1

@2T1

@x2
� @

2T1

@y2
� @

2T1

@z2

� �
� g1�x; y; z; t�; �1�

Gap

@T2

@t
� �2

@2T2

@x2
� @

2T2

@y2
� @

2T2

@z2

� �
� g2�x; y; z; t�; �2�

Resist

@T3

@t
� �3

@2T3

@x2
� @

2T3

@y2
� @

2T3

@z2

� �
� g3�x; y; z; t�; �3�

Substrate

@T4

@t
� �4

@2T4

@x2
� @

2T4

@y2
� @

2T4

@z2

� �
� g4�x; y; z; t�; �4�

where T1;T2;T3;T4; �1; �2; �3; �4 are temperatures, and thermal diffusivities
respectively. The source term gi�x; y; z; t�(i � 1; 2; 3; 4) depends on the mode of
the system and can be determined by experiments. The boundary conditions
are described as follows:

On the top surface of the mask, z � 0, where heat convection occurs,

k1
@T1

@z
� hc�T1 ÿ T1�; �5�

where T1 is the temperature of the surroundings and hc is the convection
coefficient.

On the bottom surface of the mask, z � H1, we assume that the flux across
the interface does not change,

ÿk1
@T1

@z
� ÿk2

@T2

@z
; and T1 � T2: �6�

Similarly, on the top surface of the resist, z � H1 � H2,

ÿk2
@T2

@z
� ÿk3

@T3

@z
; and T3 � T2: �7�

On the bottom surface of the resist, z � H 1 � H2 � H3,

ÿk3
@T3

@z
� ÿk4

@T4

@z
; T3 � T4: �8�
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Under experimental conditions, the side walls of the mask, resist and substrate
(Figure 2), and the bottom surface of the substrate are maintained at a nearly
uniform temperature as a result of its contact with a heat sink that is designed
to promote heat dissipation. As such, it is realistic to assume
Ti � T1; i � 1; 2,3,4, on the side walls, and T4 � T1 on the bottom surface of
the substrate.

3. Numerical model
The numerical model is developed based on a hybrid finite element-finite
difference scheme, and the idea of Crank-Nicolson type scheme for parabolic
differential equations. A domain decomposition algorithm is then obtained
based on a parallel Gaussian elimination technique for solving block
tridiagonal linear systems. To this end, we first apply the finite element method
for the xy-cross section.

3.1. Semi-discretized equation
We consider a three-dimensional parabolic differential equation in a cylindrical
domain, as shown in Figure 2,

@T

@t
� � @2T

@x2
� @

2T

@y2
� @

2T

@z2

� �
� g�x; y; z; t�; �9�

where � is thermal diffusivity. We assume that T � 0 when the point �x; y; z� is
at the side wall. LetZZ

G

@T

@t
vÿ � @2T

@x2
� @

2T

@y2
� @

2T

@z2

� �
vÿ gv

� �
dxdy

�
ZZ

G

@T

@t
v� � @T

@x

@v

@x
� @T

@y

@v

@y

� �
ÿ � @

2T

@z2
vÿ gv

� �
dxdy

� 0;

�10�

where v�x; y� is a function in the Sobolev space H 1
o (Carey and Oden, 1984).

Without loss of generality, we consider that a finite element mesh is
constructed in the xy-cross section (as shown in Figure 3). A test function for
T�x; y; z; t� is then chosen to be

Th�x; y; z; t� �
XN

p�1

Tp�z; t�'p�x; y�; �11�

where 'p�x; y� is a basic function (e.g. linear basic function), N is the number of
grid points in the xy-cross section. Also, we consider

gh�x; y; z; t� �
PN
p�1

gp�z; t�'p�x; y� as an interpolant of g�x; y; z; t�. Substituting

Th�x; y; z; t� and gh�x; y; z; t� into (10), we obtain
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XN

p�1

@Tp

@t

ZZ
G

'pvdxdy

�
XN

p�1

�Tp

ZZ
G

@'p

@x

@v

@x
� @'p

@y

@v

@y

� �
dxdyÿ �@

2Tp

@z2

ZZ
G

'pvdxdy

� �

ÿ
XN

p�1

gp

ZZ
G

'pvdxdy � 0:

�12�

If we choose v � 'q, then (12) becomesXN

p�1

@Tp

@t

ZZ
G

'p'qdxdy

�
XN

p�1

�Tp

ZZ
G

@'p

@x

@'q

@x
� @'p

@y

@'q

@y

� �
dxdyÿ �@

2Tp

@z2

ZZ
G

'p'qdxdy

� �

ÿ
XN

p�1

gp

ZZ
G

'p'qdxdy � 0; q � 1; 2; � � � ;N :

�13�

Introducing the vector notations T
* �z; t� � T1�z; t�; � � � ;TN �z; t�� �T , f

*�z; t� �
g1; � � � ; gN� �T and the matrices MNxN and KNxN with the two respective entries,

mqp �
ZZ

G

'p'qdxdy and kqp �
ZZ

G

@'p

@x

@'q

@x
� @'p

@y

@'q

@y

� �
dxdy; �14�
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mesh in the xy cross
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we can express system (13) in matrix form as follows:

M
@T

*

@t
� �KT

* ÿ �M
@2T

*

@z2
� Mf

*

: �15�

For simplification, we apply the lumped mass technique (Carey and Oden, 1984;
Chandrupatla and Belegundu, 1991) to obtain a diagonal matrix D and then
replace M by D in (15) to give

D
@T

*

@t
� �KT

* ÿ �D
@2T

*

@z2
� Df

*

; �16�

where each entry dp at the diagonal of D is 1
3

P
�

S� (i.e. one-third of the sum of
all elements with node p as one vertex).

Let T
*

m � T
* �m�z; t�, where �z is the grid size in the z-direction,

m � 1; � � � ;Nz. Using a second-order standard finite difference to approximate
@2T

*

@z2 , we obtain a semi-discretized equation for (16) as follows:

D
@T

*

m

@t
��KT

*

mÿ �

�z2
D T

*

m�1ÿ2T
*

m � T
*

mÿ1

� �
�Df

*

m; m�1; � � � ;Nz; �17�

It should be pointed out that K and D are symmetric and positive definite, and

the entries of K satisfy kpp �
PN
q�1
p6�q

kpq

�� ��, p � 1; � � � ;N .

3.2. Crank-Nicolson type scheme
The simplest practical time discretization of (17) is the Crank-Nicolson type
scheme (Canuto et al., 1988). Since K is a sparse matrix, we define a diagonal
matrix D1 with a diagonal entry, dp � 2kpp, where kpp is the entry on the main
diagonal line of the matrix K , and p � 1; 2; � � � ;N . Thus, based on the idea of
the Crank-Nicolson type scheme, a numerical scheme can be obtained as
follows:

D
T
* n�1

m ÿ T
* n

m

�t
� �

2
D1T

* n�1

m ÿ �

2�z2
D

�
T
* n�1

m�1 ÿ 2T
* n�1

m � T
* n�1

mÿ1

�
� �

2
D1T

* n

m ÿ �KT
* n

m �
�

2�z2
D

�
T
* n

m�1 ÿ 2T
* n

m � T
* n

mÿ1

�
� Df

*n�1=2

m

m � 1; � � � ;Nz; n � 0; 1; 2; � � � ;

�18�

where T
* n

m � T
* �m�z; n�t�, f

*n�1=2

m � f
*�m�z; �n� 1

2��t�, �t is the time
increment, and n�t � to. It can be seen that the above scheme (18) is first-order
accurate in �t.
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To discuss the stability of (18), we introduce the following notations for
matrices and vectors,

K �
K

. .
.

K

264
375;D � D

. .
.

D

264
375;D1 �

D1

. .
.

D1

2664
3775;

U �

2D ÿD

ÿD 2D ÿD

. .
.

ÿD 2D ÿD

ÿD 2D

26666664

37777775;G
* n�1=2

�
f
*1=2

1

..

.

f
*n�1=2

Nz

266664
377775;T* n

�
T
* n

1

..

.

T
* n

Nz

26664
37775:

Thus, we can rewrite (18) into a matrix form as follows:
1

�t
D� �

2
D1� �

2�z2
U

� �
T
* n�1

� 1

�t
D� �

2
D1 � �

2�z2
U

� �
T
* n

ÿ ��K� �

�z2
U�T*

n

ÿDG
* n�1=2

� �
:

�19�

Let A � 1
�t

D� �
2 D1 � �

2�z2 U and B � IÿAÿ1 �K� �
�z2 U

� �
. Then (19)

becomes

T
* n�1

� BT
* n

�Aÿ1DG
*

n�1=2:

�20�
To determine the stability of (20), it is necessary to compute the
eigenvalues of the amplification matrix B. Based on the theory given in
Atkinson (1988), the quantity BlT

* n

! 0
*

as l !1 for any T
* n

2 RNzN if the

eigenvalue � of B satisfies �j j < 1. Let � be an eigenvalue of

Aÿ1 �K� �
�z2 U

� �
and x

*
be an eigenvector corresponding to � such that

�K� �

�z2
U

� �
x
* � � 1

�t
D� �

2
D1 � �

2�z2
U

� �
x
*
: �21�

Thus, the eigenvalue � of B is
� � 1ÿ �: �22�

Since K and D are symmetric and positive definite, D;D1; and K are
symmetric and positive definite. Also, it can be seen that U is symmetric and
positive definite. Thus, � is positive and can be obtained as follows:

� � �x
*T

Kx
* � �

�z2 x
*T

Ux
*

1
�t

x
*T

Dx
* � �

2 x
*T

D1x
* � �

2�z2 x
*T

Ux
*
: �23�

Theorem. The eigenvalue � of B satisfies �j j < 1. Hence, scheme (20) is
unconditionally stable.
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Proof. It can be seen that x
*T

Kx
* � x

*T
D1x

*
. In fact, from the entry

kpp �
PN
p�1
p 6�q

kpq

�� ��, we obtain by the Gerschgorin theorem [3] that the eigenvalue �p

of K satisfies �p ÿ kpp

�� �� � PN
q�1
p 6�q

kpq

�� �� � kpp. Therefore, 2kpp ÿ �p � 0. Since

D1 is a diagonal matrix with a diagonal entry, dp � 2kpp, we obtain from

linear algebra (Anton, 1994) that D1 ÿ K and hence D1 ÿK are

symmetric and positive semi-definite. This results in x
*T

Kx
* � x

*T
D1x

*
.

Hence, we obtain from (23) that 0 < � < 2. We conclude that �j j � 1ÿ �j j
< 1.

3.3. Domain decomposition algorithm

We now apply scheme (18) to solve (1)-(8) and write the scheme as follows:

D
�T* i�n�1

m ÿ �T* i�nm
�t

� �i

2
D1

�
T
*

i

�n�1

m

ÿ �i

2�z2
i

D

 �
T
*

i

�n�1

m�1

ÿ 2

�
T
*

i

�n�1

m

�
�

T
*

i

�n�1

mÿ1

!
� �i

2
D1 T

*

i

� �n

m
ÿ �iK T

*

i

� �n

m

� �i

2�z2
i

D T
*

i

� �n

m�1
ÿ 2 T

*

i

� �n

m
� T

*

i

� �n

mÿ1

� �
� D g

*

i

� �n�1=2

m
; m � 1; � � � ;N �i�z ; n � 0; 1; 2; � � � ;

�24�

where i � 1; 2; 3; 4. At each time step, �T* i�n�1
m is assumed to satisfy the

discrete boundary and interfacial conditions as follows:

k1

T
*

1

� �n�1

1
ÿ T

*

1

� �n�1

0

�z1
� hc� T

*

1

� �n�1

0
ÿ T

*

1�; z � 0; �25a�

ÿk1

T
*

1

� �n�1

N
�1�
z �1

ÿ T
*

1

� �n�1

N
�1�
z

�z1
� ÿk2

T
*

2

� �n�1

1

ÿ T
*

2

� �n�1

0

�z2
;

T
*

1

� �n�1

N
�1�
z �1
� T

*

2

� �n�1

0
;

8>>>><>>>>: z � H1; �25b�
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ÿk2

T
*

2

� �n�1

N
�2�
z �1

ÿ T
*

2

� �n�1

N
�2�
z

�z2
� ÿk3

T
*

3

� �n�1

1

ÿ T
*

3

� �n�1

0

�z3
;

T
*

2

� �n�1

N
�2�
z �1
� T

*

3

� �n�1

0
;

8>>>><>>>>: z � H1 � H2; �25c�

ÿk3

T
*

3

� �n�1

N
�3�
z �1

ÿ T
*

3

� �n�1

N
�3�
z

�z3
�ÿk4

T
*

4

� �n�1

1

ÿ T
*

4

� �n�1

0

�z4
;

T
*

3

� �n�1

N
�3�
z �1
� T

*

4

� �n�1

0
;

8>>>><>>>>: z � H1 � H2 � H3; �25d�

On the other boundaries,

T
*

i

� ��n�1�

m
� T1; �i � 1; 2; 3; 4�: �26�

�T* i��n�1�
m

n o
�i � 1; 2; 3; 4� are computed by equation (24). As such, we express

these equations as four block tridiagonal linear systems.

ÿriD T
*

i

� �n�1

mÿ1
���2ri � 1�D�aiD1� T

*

i

� �n�1

m
ÿriD T

*

i

� �n�1

m�1
� f

*

i

� �n

m
;

m � 1; � � � ;Ni
z

�27�

where ri � �i�t

2�z2
i

and ai � �i�t
2 ; i � 1; 2; 3; 4. Since �T* i�n�1

m

n o
�i � 1; 2; 3; 4� are

unknown at the interface between layers, the above four block tridiagonal
linear systems cannot be solved. To overcome this difficulty, we apply a
parallel Gaussian elimination (as described in Dai and Nassar (1998)) for
solving block tridiagonal linear systems. As such, a domain decomposition
algorithm for thermal analysis in the X-ray irradiation process can be described
as follows:

Step 1. Calculate the coefficient sequences A
�1�
m ;v

�1�
m

n o
,

A
�2�
m ;v

�2�
m ;w

�2�
m

n o
; ~A

�2�
m ; ~v�2�m ; ~w�2�m

n o
, A

�3�
m ;v

�3�
m ;w

�3�
m

n o
, ~A

�3�
m ; ~v�3�m ; ~w�3�m

n o
, and

~A
�4�
m ; ~v�4�m

n o
as follows:

A�1�m � �2r1 � 1�D � a1D1 ÿ r1DA
�1�
mÿ1

h iÿ1

r1D;A
�1�
o � 0; �28a�

v�1�m � �2r1�1�D � a1D1ÿr1DA
�1�
mÿ1

h iÿ1

� f
*

1

� �n

m
� r1Dv

�1�
mÿ1�;v�1�o �0;

m � 1; � � � ;N �1�z ;

�28b�

A�i�m � �2ri � 1�D � aiD1 ÿ riDA
�i�
mÿ1

h iÿ1

riD �;A�i�o � 0; �29a�
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v�i�m � �2ri � 1�D � aiD1 ÿ riDA
�i�
mÿ1

h iÿ1

� f
*

i

� �n

m
� riDv

�i�
mÿ1�;v�i�o � 0;

�29b�

w�i�m � �2ri � 1�D � aiD1 ÿ riDA
�i�
mÿ1

h iÿ1

riDw
�i�
mÿ1�;w�i�o � 1;

m � 1; � � � ;N �i�z ; i � 2; 3;
�29c�

~A
�i�
m � �2ri � 1�D � aiD1 ÿ riD~A

�i�
m�1

h iÿ1

riD; ~A
�i�
N
�i�
z �1
� 0; �30a�

~v�i�m � �2ri � 1�D � aiD1 ÿ riD~A
�i�
m�1

h iÿ1

� f
*

i

� �n

m
�riD~v

�i�
m�1�;~v�i�N

�i�
z �1
�0; �30b�

~w�i�m � �2ri � 1�D � aiD1 ÿ riD~A
�i�
m�1

h iÿ1

riD ~w
�i�
m�1�; ~w

�i�
N
�i�
z �1
� 1;

m � N �i�z ; � � � ; 1; i � 2; 3;

�30c�

~A
�4�
m � �2r4 � 1�D � a4D1 ÿ r4D~A

�4�
mÿ1

h iÿ1

r4D; ~A
�4�
N
�4�
z �1
� 0; �31a�

~v�4�m � �2r4�1�D�a4D1ÿr4D~A
�4�
m�1

h iÿ1

� f
*

4

� �n

m
�r4D~v

�4�
m�1�; ~v�4�N

�4�
z �1
�0;

m � N �4�z ; � � � ; 1:
�31b�

Step 2. Substitute the following six equations

T
*

1

� �n�1

N
�1�
z

� A
�1�
N
�1�
z

T
*

1

� �n�1

N
�1�
z �1
� v

�1�
N
�1�
z

;

T
*

2

� �n�1

N
�2�
z

� A
�2�
N
�2�
z

T
*

2

� �n�1

N
�2�
z �1
� v

�2�
N
�2�
z

�w
�2�
N
�2�
z

T
*

2

� �n�1

0
;

T
*

2

� �n�1

1
� ~A

�2�
1 T

*

2

� �n�1

0
� ~v

�2�
1 � ~w

�2�
1 T

*

2

� �n�1

N
�2�
z �1

;

T
*

3

� �n�1

N
�3�
z

� A
�3�
N
�3�
z

T
*

3

� �n�1

N
�3�
z �1
� v

�3�
N
�3�
z

�w
�3�
N
�3�
z

T
*

3

� �n�1

0
;

T3� �n�1
1 � ~A

�3�
1 T

*

3

� �n�1

0
� ~v

�3�
1 � ~w

�3�
1 T

*

3

� �n�1

N
�3�
z �1

and

T
*

4

� �n�1

1
� ~A

�4�
1 T

*

4

� �n�1

0
� ~v

�4�
1

into the discrete boundary equations (25b)-(25d) to obtain �T* 1�n�1

N
�1�
z �1

, �T* 2�n�1
0 ,

�T* 2�n�1

N
�2�
z �1

, �T* 3�n�1
0 , �T* 3�n�1

N
�3�
z �1

and �T* 4�n�1
0 .

Step 3. Solve for the rest of the unknowns in �T* i�
n�1

m

� �
�i � 1; 2; 3; 4� using

the following sequences:
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T
*

1

� �n�1

m
� A�1�m T

*

1

� �n�1

m�1
�  �m1�; T

*

1

� �n�1

N
�1�
z �1
� 0

*

; m � N �1�z ; � � � ; 1:
�33a�

T
*

i

� �n�1

m
�A�i�m T

*

i

� �n�1

m�1
�v�i�m �w�i�m T

*

i

� �n�1

0
; m � N �i�z ; � � � ; 1; i � 2; 3: �33b�

T
*

4

� �n�1

m
� ~A

�4�
m T

*

4

� �n�1

mÿ1
� ~v�4�m ; T

*

4

� �n�1

0
� 0

*

; m � 1; � � � ;N �4�z : �33c�
It should be pointed out that the procedures in step 1 involve many matrix
inverse calculations. However, the computation is rather simple since D and D1

are diagonal matrices. Further, this domain decomposition algorithm has a
high inherent parallelism. This can be seen by the fact that equations (28)-(33)
can be computed in parallel. For example, one can use five computer processes
to run this algorithm. In step 1, four processes are used to calculate

A
�1�
m ;v

�1�
m

n o
, A

�2�
m ;v

�2�
m ;w

�2�
m

n o
and ~A

�2�
m ; ~v�2�m ; ~w�2�m

n o
, A

�3�
m ;v

�3�
m ;w

�3�
m

n o
and

~A
�3�
m ; ~v�3�m ; ~w�3�m

n o
, ~A

�4�
m ; ~v�4�m

n o
in parallel, and pass the information to the fifth

process. Then the fifth process runs step 2 and returns the results to the first
four processes. Finally, the first four processes run step 3 in parallel. This
domain decomposition algorithm can be readily applied for solving three-
dimensional parabolic differential equations on thin multilayers with irregular
geometry in the xy-direction.

4. Numerical example
To demonstrate the applicability of the present numerical method, we
investigate the maximum temperature rise within the cylindrical resist in the
example given in Dai and Nassar (1998), and compare the numerical results
with those obtained by using a preconditioned Richardson iteration for solving
the corresponding elliptic equations, which was developed in Dai and Nassar
(1998). The preconditioned Richardson iteration corresponding to scheme (24)
can be written as follows:

�iD1 T
*

i

� ��n�1�

m
ÿ �i

�z2
i

D T
*

i

� ��n�1�

m�1
ÿ2 T

*

i

� ��n�1�

m
� T

*

i

� ��n�1�

mÿ1

� �
��iD1 T

*

i

� ��n�
m
ÿ �i

�z2
i

D T
*

i

� ��n�
m�1
ÿ2 T

*

i

� ��n�
m
� T

*

i

� ��n�
mÿ1

� �

ÿ!
"
�iK T

*

i

� ��n�
m
ÿ �i

�z2
i

D

�
T
*

i

� ��n�
m�1
ÿ2 T

*

i

� ��n�
m
�T

*

i

� ��n�
mÿ1

�
ÿD g

*

i

� �
m

#
m � 1; � � � ;N �i�z ; n � 0; 1; 2; � � � ; i � 1; 2; 3; 4;

�34�

where 0 � ! � 1 is a relaxation parameter and n is an iteration number.
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We apply both the present method and the preconditioned Richardson
method to an X-ray irradiation process, where the target consists of a mask, a
resist and a substrate (with a gap between mask and resist), as shown in Figure
2. In this example, beryllium, He gas, PMMA and silicon were used for the
mask, gap, resist and substrate respectively. The heat absorption in each layer
is the exponential expression (Ameel et al., 1994):

gi�x; y; z; t� �
�Wo�i���ieÿ���iz����i�cp�i; 0 � r � a;

0 ; a < r � b

8<: i � 1; 2; 3; 4; �35�

where the coefficients Wo; �; cp and � for the mask, gap, resist and substrate
were chosen as listed in Table I. Here, we chose b= 5mm. For convenience, we
take the exposed area to be circular (with radius r � a= 1mm) and in the center
of the mask (Figure 2). However, it should be noted that in general, this area
may not be in the center. Hence, it is necessary to consider a three-dimensional
model. Furthermore, we chose a convection coefficient hc = 0.006W/cm2/K for
the top of the mask. Without loss of generality, we considered a finite element
mesh with the same 97 grid points in the xy-cross section, as shown in Figure 3,
for each layer, and chose 50 grid points in the z-direction for mask, gap, resist
and substrate, respectively. The time increment, �t, was chosen to be 0.001. A
linear basic function was chosen in each triangular element. The steady state
solution was obtained when Maxj�Tn�1ÿTn�=Tn�1 j � 0:1 per cent was satisfied in
the resist.

Based on the above parameters, the steady state solution obtained on a SUN
workstation gave a maximum temperature rise within the resist of 4.16K at the
center when n � 483 with a CPU time of about 15 minutes. This maximum
temperature rise is very close to 4.20K obtained by the preconditioned
Richardson method (equation (34)) with ! � 1. Figure 4 shows the transient
temperature profiles along the central line in the z-direction. At the steady state
case, there is good agreement with that obtained by the preconditioned
Richardson method. Figure 5 shows contours of the steady state temperature
distributions in the rz-cross section, which is similar to Figure 6 obtained using
the preconditioned Richardson method. Since the silicon substrate thermal
conductivity is three orders of magnitude greater than PMMA, the temperature

Table I.
Parameters used for
the different layers

Properties
Beryllium

(Weast, 1985)
He gas (100mbar)

(Barron, 1985)

PMMA
(Brandup and

Immergut,1989)
Silicon

(Weast, 1985)

k,W/cm/K 2.0 0.00152 0.00198 1.5
W,W/cm2 2.042 0.0 1.823 1.424
�, cmÿ1 40.81 0.0 50.26 99.42
�, g/cm3 1.85 0.000162 1.18 2.3
c�, kJ/kg/K 0.436 5.2 1.42 0.715
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distribution is nearly uniform over the substrate. From these figures, one can
see that almost all of the heat added to the resist by the X-ray beam is
transferred to the substrate rather than to the surrounding environment. This
result is the same as that obtained in Ameel et al. (1994).

5. Conclusion

A three-dimensional numerical method for obtaining the temperature profile in
an X-ray irradiation process is developed by using a hybrid finite element-finite
difference scheme for solving three dimensional parabolic equations on thin
layers with cylindrical geometry. A domain decomposition algorithm is then
obtained based on a parallel Gaussian elimination for solving block tridiagonal
linear systems. The method is illustrated by a numerical example. This
method can be used for solving three dimensional parabolic equations on thin
layers with arbitrary geometry in the xy-plane. Also, it can be applied in cases
where surface scanning is used. An empirical experimental function was used
to simulate heat source or energy deposition in the resist. However, the method
is general where other source functions may be used. Further investigations are
needed in order to determine how stress as influenced by temperature affects
distortions in the mask and resist.
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